Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Vincent A. Patrick, Brian W. Skelton* and Allan H. White

Chemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Correspondence e-mail:
bws@crystal.uwa.edu.au

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.054$
Data-to-parameter ratio $=9.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(4a,4a $\beta, 9 a \beta$)-4a-Acetoxy-4-methoxy-3,4,4a,9a-tetrahydro-1 H -anthracene-2,9,10-trione

The relative stereochemistry of the title compound is defined by a room-temperature single-crystal X-ray study.

Comment

A recent report describes the determination of a pair of tricyclic adducts of 'Danishefsky's diene' $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right)-$ $\mathrm{CH}=\mathrm{CH}(\mathrm{OMe})$ with variously substituted 1,4-benzoquinones (Cameron et al., 2003), a feature of interest being the possibility of interaction between axial methoxy substituents of the peripheral rings with the carboxyl groups of the central ring, provoking an extension of the work to a study of the present compound, a structure determination of which was undertaken (a) to define its stereochemistry and (b) to explore the possibility of similar interactions.

(I)

The results of the room-temperature, single-crystal X-ray structure determination are consistent with the stoichiometry, connectivity and stereochemistry of the title compound, (I), as displayed in Fig. 1. Despite the planarity of the associated peripheral aromatic ring and of the two carbonyl moieties, the central ring is far from planar, the torsion in the $\mathrm{C} 9-\mathrm{C} 9 \mathrm{a}-$ $\mathrm{C} 4 \mathrm{a}-\mathrm{C} 10$ string being $-46.2(3)^{\circ}$; dihedral angles between the $\mathrm{C}_{2} \mathrm{CO}$ planes about $\mathrm{C} 9,10$ and the aromatic C_{6} plane are 15.0 (1) and $5.9(1)^{\circ}$, and between the carbonyl planes $20.8(1)^{\circ}$, i.e. they bow towards each other, with torsion angles $\mathrm{O} 9-\mathrm{C} 9-\mathrm{C} 9 \mathrm{a}-\mathrm{C} 4 \mathrm{a}$ and $\mathrm{O} 10-\mathrm{C} 10-\mathrm{C} 4 \mathrm{a}-\mathrm{C} 9 \mathrm{a}$ being $-142.8(3)$ and $-159.3(3)^{\circ}$, respectively. The saturated peripheral ring is a 'boat', with C 4 a 2 at the prow; torsion angles outward from C 4 a in either direction pairwise are: -52.8 (3), 53.2 (3); 51.3 (3), -51.6 (4), -50.4 (4) and 50.6 (4) ${ }^{\circ}$. Bond lengths and angles are as expected (Table 1); $\mathrm{C}-\mathrm{C}$ distances to either side of the carbonyl groups are similar, excepting those to the aromatic ring which are slightly shorter. Of interest in previous contexts are the distances of O4 (O4a1) to C9 (C10) of 2.783 (4) \AA [2.731 (4) Å], seemingly without impact on the planarity at the latter [angle sums about C9,10 are $359.8^{\circ}(\times 2)$]. The crystal packing is unremarkable. The only other structurally characterized similar tricyclic system with similar saturation and trione substitution has an otherwise very different substitution pattern (Gordon et al., 1992).

Received 15 September 2003
Accepted 30 September 2003 Online 7 October 2003

Figure 1
Projection of (I) normal to its aromatic ring plane, shown with 20% probability displacement ellipsoids for the non-H atoms, H atoms having arbitrary radii of $0.1 \AA$.

Experimental

Compound (I) was synthesized by the reaction of Danishefsky's diene and 2-acetoxy-1,4-naphthoquinone and recrystallized from diethyl ether (Cameron et al., 1980), m.p. $451-453 \mathrm{~K}$ (decomposition). Analysis found: C 64.7, H $5.3 \% ; \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$ requires: C 64.5, H 5.1\%; $\lambda_{\max }, \log (\varepsilon): 227,258,299 \mathrm{~nm}(4.55,4.05,3.59) ; v_{\text {max }}: 1766$ (br), 1760, $1596,1240 \mathrm{~cm}^{-1} ; \delta 2.46(d d, J=15.5,7.5 \mathrm{~Hz}, \mathrm{H} 1 \beta), 2.73(d d d, J=15.5$, $3,2 \mathrm{~Hz}, \mathrm{H} 3 \alpha), 2.85(d d, J=15.5,3 \mathrm{~Hz}, \mathrm{H} 3 \beta), 2.93\left(s, \mathrm{OCH}_{3}\right), 3.39$ $(d d d, J=15.5,2,1.5 \mathrm{~Hz}, \mathrm{H} 1 \alpha), 4.02(b r t d, J=3,1 \mathrm{~Hz}, \mathrm{H} 4), 4.29(b r d, J$ $=7.5 \mathrm{~Hz}, \mathrm{H} 9 \mathrm{a}), 7.69-8.09(m, \mathrm{H} 5-8) . m / z: 316\left(M^{+}, 1 \%\right), 274$ (28), 216 (54), 188 (100). Like its congeners recorded elsewhere (Cameron et al., 2003), the material decomposes readily; it was shipped rapidly and data measured within a restricted 2θ range within a few hours.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$
$M_{r}=316.31$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=13.645$ (5) A
$b=8.293$ (4) \AA
$c=14.112(5) \AA$
$\beta=104.40(2)^{\circ}$
$V=1546.7(11) \AA^{3}$
$Z=4$

Data collection

Syntex $P 2_{1}$ diffractometer
$2 \theta-\omega$ scans
2035 measured reflections
2035 independent reflections 1878 reflections with $I>\sigma(I)$ $\theta_{\text {max }}=22.5^{\circ}$

$$
\begin{aligned}
& D_{x}=1.358 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 9 \\
& \quad \text { reflections } \\
& \theta=9.9-17.2^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.34 \times 0.21 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

$h=0 \rightarrow 14$
$k=0 \rightarrow 8$
$l=-15 \rightarrow 14$
6 standard reflections frequency: 60 min intensity decay: none

Refinement

Refinement on $F \quad$ H-atom parameters not refined
$R=0.052$
$w R=0.054$
$S=1.07$
$w=1 /\left(\sigma^{2}(F)+0.0005 F^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.006$
$\Delta \rho_{\max }=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{\circ} \AA^{-3}$
208 parameters

Table 1

Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{C} 1-\mathrm{C} 2$	$1.493(5)$	$\mathrm{O} 4-\mathrm{C} 41$	$1.407(5)$
$\mathrm{C} 1-\mathrm{C} 9 \mathrm{a}$	$1.535(3)$	$\mathrm{C} 4 \mathrm{a}-\mathrm{O} 4 \mathrm{a}$	$1.453(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.216(4)$	$\mathrm{C} 4 \mathrm{a}-\mathrm{C} 9 \mathrm{a}$	$1.532(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.503(5)$	$\mathrm{C} 8 \mathrm{a}-\mathrm{C} 9$	$1.484(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.530(4)$	$\mathrm{C} 8 \mathrm{a}-\mathrm{C} 10 \mathrm{a}$	$1.403(3)$
$\mathrm{C} 4-\mathrm{O} 4$	$1.415(4)$	$\mathrm{C} 9-\mathrm{O} 9$	$1.211(3)$
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{a}$	$1.535(4)$	$\mathrm{C} 10-\mathrm{O} 10$	$1.214(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{a}$	$112.2(3)$	$\mathrm{C} 4-\mathrm{C} 4 \mathrm{a}-\mathrm{O} 4 \mathrm{a}$	$103.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$122.5(3)$	$\mathrm{C} 4 \mathrm{a}-\mathrm{O} 4 \mathrm{a}-\mathrm{C} 4 \mathrm{a} 1$	$117.9(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$122.5(3)$	$\mathrm{O} 4 \mathrm{a}-\mathrm{C} 4 \mathrm{a} 1-\mathrm{O} 4 \mathrm{a} 1$	$123.0(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$109.7(2)$	$\mathrm{O} 9-\mathrm{C} 9-\mathrm{C} 9 \mathrm{a}$	$121.7(2)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 4 \mathrm{a}$	$105.1(2)$	$\mathrm{O} 10-\mathrm{C} 10-\mathrm{C} 10 \mathrm{a}$	$122.1(2)$

The H atoms were located in difference Fourier maps and placed at idealized positions $(\mathrm{C}-\mathrm{H}=0.95 \AA$).

Data collection: $P 2_{1}$ Diffractometer Control Software (Syntex, 1973); cell refinement: P2 ${ }_{1}$ Diffractometer Control Software; data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: Xtal3.5 CRYLSQ; molecular graphics: Xtal3.5; software used to prepare material for publication: Xtal3.5 BONDLA CIFIO.

The source of the crystals and other non-crystallographic data (Cameron et al., 1980) is gratefully acknowledged, together with the assistance of Professor D. W. Cameron and Dr J. Zdysiewicz in the preparation of the manuscript.

References

Cameron, D. W., Conn, C. \& Feutrill, G. I (1980). Unpublished work.
Cameron, D. W., Evans, R. L., Feutrill, G. I., Patrick, V. A., Skelton, B. W. \& White, A. H. (2003). Aust. J. Chem. In the press.
Gordon, D. M., Danishefsky, S. J. \& Schulte, G. K. (1992). J. Org. Chem. 57, 7052-7055.
Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). Xtal3.5 Users Manual. University of Western Australia, Perth: Lamb.
Syntex (1973). P2 2_{1} Diffractometer Control Software. Syntex Analytical Instruments, Cupertino, California, USA.

